C

A ST
ao S



topics

e A brief introduction to UML

* Write enumerator for your collection



UML = Unified Modeling Language

* Class diagram, object diagram, sequence diagram and package
diagram

* a class diagram in UML

* a type of static structure diagram that describes the structure of a system by
showing the system's classes, their attributes, operations (or methods), and
the relationships among objects.

* the main building block of object oriented modeling



Classes in diagram

* classes are represented with boxes that contain three compartments:

1. The top compartment contains the name of the class. It is printed
in bold and centered, and the first letter is capitalized.

2. The middle compartment contains the attributes of the class. They
are left-aligned and the first letter is lowercase.

3. The bottom compartment contains the operations the class can
execute. They are also left-aligned and the first letter is lowercase.

* Note: To further describe the behavior of systems, the class diagrams
can be complemented by a state diagram.



A class

ClassName

attributes

methods()




* specify the visibility of a class member
* + public
* - private
* # protected

* Scope
 Classifier members (static)
* To indicate a classifier scope for a member, its name must be underlined.
* [nstance members



Relationships

* Class-level relationships
* Instance-level relationships
* General relationship



UML relations notation

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition



Class-level relationships

* Generalization/Inheritance
* known as the inheritance or "is a" relationship

 The UML graphical representation of a Generalization is a hollow triangle shape on
the superclass end of the line (or tree of lines) that connects it to one or more
subtypes.

* Realization/Implementation

* The UML graphical representation of a Realization is a hollow triangle shape on the
interface end of the dashed line (or tree of lines) that connects it to one or more
implementers.

* Arealization is a relationship between classes, interfaces, components and packages
that connects a client element with a supplier element.

* A realization relationship between classes/components and interfaces shows that
the class/component realizes the operations offered by the interface.



Instance-level relationships

* Dependency
* a semantic connection between dependent and independent model elements

* it exists between two elements if changes to the definition of one element may
cause changes to the other.

* Association
* arelationship between two separate classes.

* Aggregation
 a special form of association which is a unidirectional
* “has a” or “is part of” relationship

* Composition
* arestricted form of Aggregation in which two entities (or you can say classes) are
highly dependent on each other. (human and heart)



example

Animal

+age : Int
+gender: String

+isMammal ()
+mate()

/TV\

Duck

Fish Zebra

+beakColor : String = “yellow”

+Swim()
+quack()

-sizelnFt : Int +is_wild : Boolean
-canEat : Boolean -

-swim() +run()




<<interface>> Movable

+movelp() :void
+moveDown () :void
+moveleft():void
+moveRight():void

MovablePoint

~x:1nt 1

~y:int e

~xSpeed:int
~ySpeed:int

+MovablePoint(x:int,y:int,
xSpeed:int,ySpeed: int)

+toString():String

+moveUp() :void

+moveDown () :void

+movelLeft ():void

+moveRight():void

MovableCircle

-radius:int
-center:MovablePoint

+MovableCircle(x:int,y:int
xSpeed :int,ySpeed: int,
radius :int)

+toString() :String

+moveUp() :void

+moveDown () :void

+movelLeft () :void

+moveRight():void




* How define an enumerator that you can use to iterate over the
elements in a collection.



Enumerating the elements in array

int[] pins={9,3,7,2}
foreach (int pin in pins)

{

Console .WriteLine(pin);

}



an enumerable collection

 a collection that implements the System.Collections.lEnumerable interface.

public interface IEnumerable

{
IEnumerator GetEnumerator();
}
public interface Enumerator
{

object Current { get; }
bool MoveNext();

void Reset(); Think of an enumerator as a pointer indicating elements in a list.



Add enumeration to class tree<ltem>



A simple iterator

using System;using System.Collections.Generic;using System.Collections;
class BasicCollection<T> : IEnumerable<T>{
private List<T> data = new List<T>();
public void FillList(params T [] items){
foreach (var datum in items){
data.Add(datum); }
}
IEnumerator<T> IEnumerable<T>.GetEnumerator(){
foreach (var datum in data){
yield return datum;}
}
IEnumerator IEnumerable.GetEnumerator(){ // Not implemented in this example
throw new NotimplementedException();}



alternative iteration mechanisms

class BasicCollection<T> : [Enumerable<T>{

public IEnumerable<T> Reverse {
get
{
for (inti=data.Count-1;i>=0;i--){
yield return datali];

}



BasicCollection<string> bc = new BasicCollection<string>();
be.FillList("Twas", "brillig", "and", "the", "slithy", "toves");

foreach (string word in bc){
Console WriteLine(word);
}

foreach (string word in bc.Reverse){
Console.WriteLine(word);

)



